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Overview
This is an extension course on elliptic PDE for the PhD students after they have

already learned the fundamental courses on PDEs. The course will include some

fundamental results on the degenerate elliptic equations, i.e. hypoellipticity,

Hörmander’s sum of square theorem, Bony’s maximum principle, sub-elliptic

estimate and sub-elliptic metric, logarithmic regularity estimate and logarithmic

Sobolev inequality, estimates of eigenvalues for finitely degenerate and infinitely

degenerate elliptic operators, and the boundary-value problems for linear and

nonlinear degenerate elliptic equations.

Learning Outcomes
After learning this course the students may know some fundamental results on the

field of degenerate elliptic equations and understand the basic idea and technique on

treatment of such kind of degenerate PDEs.

Synopsis
Lecture 1: Definition of vector fields, sum of square operator, hypoellipticity,

commutator technique, Hörmander’s Sum of Square Theorem.

Lecture 2：Sharp sub-elliptic Estimate, sub-elliptic metric and doubling property.

Lecture 3：Weighted Sobolev Spaces and Holder Spaces, corresponding Sobolev

embedding theorems, Bony's maximum principle.

Lecture 4：Boundary-value problems for linear and nonlinear degenerate elliptic

equations.

Lecture 5：Estimates of eigenvalues for finitely degenerate elliptic operator, Fourier

method.

Lectuer 6：Infinitely degenerate elliptic equations, logarithmic regularity estimate

and hypoellipticity.

Lecture 7：Logarithmic Sobolev inequality, Hardy type inequality, boundary-value

problems for nonlinear infinitely degenerate elliptic equations.

Lecture 8：Estimates of eigenvalues for infinitely degenerate elliptic operators.



Prerequisites
Prerequisites include knowing the contents of courses of “Introduction to PDE” and

“Analysis of PDEs”.
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